Chemie včelí mysli aneb jak biogenní aminy řídí chování včel

Jana Jemelková

8/2025, strana 1

Seznam literatury.

Seznam literatury

1            Huang, J. et al. Food wanting is mediated by transient activation of dopaminergic signaling in the honey bee brain. Science 376, 508-512 (2022). https://doi.org/10.1126/science.abn9920

2            Linn, M., Glaser, S. M., Peng, T. & Gruter, C. Octopamine and dopamine mediate waggle dance following and information use in honeybees. Proc Biol Sci 287, 20201950 (2020). https://doi.org/10.1098/rspb.2020.1950

3            Xu, X. L. et al. CYP9Q1 Modulates Dopamine to Increase Sugar Responsiveness in Honeybees (Apis mellifera). Int J Mol Sci 25, 13550 (2024). https://doi.org/10.3390/ijms252413550

4            Liu, F. et al. MicroRNA ame-let-7 targets Amdop2 to increase sucrose sensitivity in honey bees (Apis mellifera). Front Zool 20, 41 (2023). https://doi.org/10.1186/s12983-023-00519-7

5            Raza, M. F. in Animal Science Annual Volume 2023   (ed Narayan Edward)  (IntechOpen, 2023).

6            Jarriault, D., Fuller, J., Hyland, B. I. & Mercer, A. R. Dopamine release in mushroom bodies of the honey bee (Apis mellifera L.) in response to aversive stimulation. Sci Rep 8, 16277 (2018). https://doi.org/10.1038/s41598-018-34460-1

7            Wright, G. A. The role of dopamine and serotonin in conditioned food aversion learning in the honeybee. Commun Integr Biol 4, 318-320 (2011). https://doi.org/10.4161/cib.4.3.14840

8            Nouvian, M. et al. Cooperative defence operates by social modulation of biogenic amine levels in the honey bee brain. P Roy Soc B-Biol Sci 285 (2018). https://doi.org/10.1098/rspb.2017.2653

9            Barron, A. B., Schulz, D. J. & Robinson, G. E. Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188, 603-610 (2002). https://doi.org/10.1007/s00359-002-0335-5

10          Arenas, A., Lajad, R., Peng, T., Gruter, C. & Farina, W. Correlation between octopaminergic signalling and foraging task specialisation in honeybees. Genes Brain Behav 20, e12718 (2021). https://doi.org/10.1111/gbb.12718

11          Peng, T., Schroeder, M. & Gruter, C. Octopamine increases individual and collective foraging in a neotropical stingless bee. Biol Lett 16, 20200238 (2020). https://doi.org/10.1098/rsbl.2020.0238

12          Buckemuller, C. et al. Octopamine Underlies the Counter-Regulatory Response to a Glucose Deficit in Honeybees (Apis mellifera). Front Syst Neurosci 11, 63 (2017). https://doi.org/10.3389/fnsys.2017.00063

13          Corby-Harris, V. et al. Octopamine mobilizes lipids from honey bee (Apis mellifera) hypopharyngeal glands. J Exp Biol 223 (2020). https://doi.org/10.1242/jeb.216135

14          Selcho, M. Octopamine in the mushroom body circuitry for learning and memory. Learn Mem 31 (2024). https://doi.org/10.1101/lm.053839.123

15          Khooshe-Bast, Z., Sahebzadeh, N., Tahmasbi, G. H., Haddadi, M., & Khani, A. Effects of octopamine on memory retention under chemical stress: a behavioral study on honey bees. Journal of Apicultural Research 63, 76-87 (2024). https://doi.org/10.1080/00218839.2023.2186018

16          Latshaw, J. S. et al. Tyramine and its \textit Amtyr1 receptor modulate attention in honey bees (\textit Apis mellifera ). eLife 12, e83348 , citation = eLife 82023;83312 e83348 (2023). https://doi.org/10.7554/eLife.83348

17          Scheiner, R. et al. Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees. J Exp Biol 220, 1443-1450 (2017). https://doi.org/10.1242/jeb.152496

18          Fussnecker, B. L., Smith, B. H. & Mustard, J. A. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera). J Insect Physiol 52, 1083-1092 (2006). https://doi.org/10.1016/j.jinsphys.2006.07.008

19          Wang, Y., Amdam, G. V., Daniels, B. C. & Page, R. E., Jr. Tyramine and its receptor TYR1 linked behavior QTL to reproductive physiology in honey bee workers (Apis mellifera). J Insect Physiol 126, 104093 (2020). https://doi.org/10.1016/j.jinsphys.2020.104093

20          French, A. S. et al. The role of serotonin in feeding and gut contractions in the honeybee. J Insect Physiol 61, 8-15 (2014). https://doi.org/10.1016/j.jinsphys.2013.12.005

21          Bombardi, C. et al. Immunohistochemical Distribution of Serotonin Transporter (SERT) in the Optic Lobe of the Honeybee, Apis mellifera. Animals (Basel) 12 (2022). https://doi.org/10.3390/ani12162032

22          Mancini, N., Giurfa, M., Sandoz, J. C. & Avargues-Weber, A. Aminergic neuromodulation of associative visual learning in harnessed honey bees. Neurobiol Learn Mem 155, 556-567 (2018). https://doi.org/10.1016/j.nlm.2018.05.014

23          Owen, M., Braidwood, J., & Bridges, A. Age dependent changes in histamine content of venom of queen and worker honey bees. Journal of Insect Physiology 23, 1031-1035 (1977). https://doi.org/https://doi.org/10.1016/0022-1910(77)90131-7

24          Bornhauser, B. C. & Meyer, E. P. Histamine-like immunoreactivity in the visual system and brain of an orthopteran and a hymenopteran insect. Cell Tissue Res 287, 211-221 (1997). https://doi.org/10.1007/s004410050747

25          Sachse, S., Peele, P., Silbering, A. F., Guhmann, M. & Galizia, C. G. Role of histamine as a putative inhibitory transmitter in the honeybee antennal lobe. Front Zool 3, 22 (2006). https://doi.org/10.1186/1742-9994-3-22

26          Ramesh, D. & Brockmann, A. Mass Spectrometric Quantification of Arousal Associated Neurochemical Changes in Single Honey Bee Brains and Brain Regions. ACS Chem Neurosci 10, 1950-1959 (2019). https://doi.org/10.1021/acschemneuro.8b00254

27          Farooqui, T. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis. Neurochem Int 62, 122-136 (2013). https://doi.org/10.1016/j.neuint.2012.09.020

28          Brown-Leung, J. M. & Cannon, J. R. Neurotransmission Targets of Per- and Polyfluoroalkyl Substance Neurotoxicity: Mechanisms and Potential Implications for Adverse Neurological Outcomes. Chem Res Toxicol 35, 1312-1333 (2022). https://doi.org/10.1021/acs.chemrestox.2c00072